Estimating Profitability of Alternative Cryptocurrencies

Danny Y. Huang

Kirill Levchenko, Alex C. Snoeren

Paper link: https://cs.princeton.edu/~yuxingh/altcoin-report/

Bitcoin alternatives

market cap

Data as of July 2016

Most altcoins are volatile

rolativo stdov

	of price
(USD/EUR)	2.5%
(GOOG)	6.8%
Bitcoin	106%
Litecoin	116%
Dogecoin	126%
Auroracoin	534%

Data as of July 2016

Few altcoins are used in commerce ... unlike Bitcoin

Potentially used as investment vehicles

Investing in altcoins

Methodology for estimating profitability

Profit = Revenue - Cost

Estimate Cost of Mining Gather historical trade data (CryptoCoinCharts) Gather historical blockchain data (18 altcoins) Compute opportunity cost

Estimate Revenue of Mining Simulate a rational miner using historical data

Opportunity cost

Opportunity cost of altcoin mining = Revenue from doing the same work in mining bitcoins

Mining Bitcoin

(bigger market, less volatile)

Compute **N** hashes

Mined bitcoins; sold at **X** dollars today

> Rational; $X \ge all cost$

Mining Altcoin

(smaller market, more volatile)

Compute same **N** hashes

Mined altcoins; sold at **Y** dollars today

> Rational; Y ≥ X = Opp Cost

Calculating opportunity cost

Opportunity cost of altcoin mining = Revenue from doing the same work in mining bitcoins

Opp cost of mining 1 altcoin $= \frac{\# \text{ of hashes to mine 1 altcoin}}{\# \text{ of hashes to mine 1 bitcoin}} \times \frac{\# \text{ of hashes to mine 1 bitcoin}}{\# \text{ of hashes to mine 1 bitcoin}}$

Example of opportunity cost of mining

Opp cost correlated with price

Estimating Profitability with Simulation

Start mining on random day Invest **\$1** of opp cost per day Sell on same day Continue for some duration, *d*

Obtain total revenue, v

Daily rate of return: $d(1 + r)^d = v$

Compute expected rate of return: E[r]

Expected rate of return

	7 days	30 days	Capital Invested
PPC	-1.1%	-0.3%	\$4.1M
AUR	0.6%	0.1%	\$1.4M
WBB	6.6%	1.5%	\$61.2K
DOT	18.3%	4.9%	\$3.2K

Daily returns for mining a random altcoin

- 1. Pick a random altcoin from 18 altcoins.
- 2. Mine the coin on Day 0. Sell by end of day.
- 3. Mine same coin on Day 1. Sell by end of day.
- 4. ...
- 5. Mine same coin on Day 6. Sell by end of day.
- 6. Compute expected daily return.

Daily returns for mining a random altcoin

Number of days since being listed

Summary

Using opp cost to estimate mining cost Using simulation to estimate profit Early start correlated with high returns

Danny Y. Huang Postdoc @ Princeton http://hdanny.org